СВЯЗЬ ПЯТОГО ПОКОЛЕНИЯБезграничные возможности

Этапы развития технологии и сетей сотовой связи

Укрупненно это выглядело так:
- 1G поставляется аналоговый голос.
- 2G представила цифровой голос.
- 3G принес мобильные данные.
- 4G LTE открыл эру мобильного интернета.
- 5G Видео 8K b интернет вещей в реальном времени.
Давайте остановимся подробнее на каждом из стандартов.

Связь 1G

День рождения сотовой связи считается 3 апреля 1973 года, когда глава подразделения мобильной связи компании Motorola Мартин Купер позвонил начальнику исследовательского отдела AT&T Bell Labs Джоэлю Энгелю, находясь на оживленной Нью-йоркской улице. Именно эти две компании стояли у истоков мобильной телефонии. Коммерческую реализацию данная технология получила 11 лет спустя, в 1984 году, в виде мобильных сетей первого поколения (1G), которые были основаны на аналоговом способе передачи информации.
Основными стандартами аналоговой мобильной связи стали:
AMPS ( (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба). Данный стандарт широко использовался в странах Северной и Южной Америки, а также в Австралии;
TACS (Total Access Communications System — тотальная система доступа к связи). Этот стандарт получил распространение во многих Европейских странах;
NMT (Nordic Mobile Telephone – северный мобильный телефон). Использовался в скандинавских странах.
TZ-801 (TZ-802, TZ-803). Использовался в Японии.
Были и другие стандарты аналоговой мобильной связи – С-450 в Германии и Португалии, RTMS (Radio Telephone Mobile System – радиотелефонная мобильная система) в Италии, Radiocom 2000 во Франции. В целом мобильная связь первого поколения представляла собой лоскутное одеяло несовместимых между собой стандартов. Во времена 1G никто не думал об услугах передачи данных – это были аналоговые системы, задуманные и разработанные исключительно для осуществления голосовых вызовов и некоторых других скромных возможностей. Модемы существовали, однако из-за того, что беспроводная связь более подвержена шумам и искажениям, чем обычная проводная, скорость передачи данных была невероятно низкой. К тому же, стоимость минуты разговора в 80-х была такой высокой, что мобильный телефон мог считаться роскошью.
Во всех аналоговых стандартах применяется частотная (ЧМ) или фазовая (ФМ) модуляция для передачи речи и частотная манипуляция для передачи информации управления. Этот способ имеет ряд существенных недостатков: возможность прослушивания разговоров другими абонентами, отсутствие эффективных методов борьбы с замираниями сигналов под влиянием окружающего ландшафта и зданий или вследствие передвижения абонентов. Для передачи информации различных каналов используются различные участки спектра частот - применяется метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA). С этим непосредственно связан основной недостаток аналоговых систем - относительно низкая емкость, являющаяся следствием недостаточно рационального использования выделенной полосы частот при частотном разделении каналов.
В каждой стране была разработана собственная система, несовместимая с остальными с точки зрения оборудования и функционирования. Это привело к тому, что возникла необходимость в создании общей европейской системы подвижной связи с высокой пропускной способностью и зоной покрытия всей европейской территории. Последнее означало, что одни и те же мобильные телефоны могли использоваться во всех Европейских странах, и что входящие вызовы должны были автоматически направляться в мобильный телефон независимо от местонахождения пользователя (автоматический роуминг). Кроме того, ожидалось, что единый Европейский рынок с общими стандартами приведет к удешевлению пользовательского оборудования и сетевых элементов независимо от производителя.

Связь 2G

Начиная с 1982 года, изучением и разработкой пан-Европейской наземной системы подвижной связи общего применения занималась рабочая группа GSM (от франц. Groupe Spécial Mobile — специальная группа по подвижной связи), которая была сформирована Европейской конференцией почтовых и телекоммуникационных ведомств. Затем, в 1989 году, изучение и разработку второго поколения мобильной связи продолжил Европейский институт стандартов в телекоммуникации. Но аббревиатура GSM осталась, хотя и приобрела новое значение — Global System for Mobile Communications (глобальная система для подвижной связи).
Внедрение коммерческих проектов на основе технологий второго поколения началось в 1991 году. Отличало второе поколение от первого в первую очередь применение цифровых методов передачи данных, что открыло возможности для создание таких сервисов, как SMS (Short Message Service — служба коротких сообщений), WAP (Wireless Application Protocol — беспроводной протокол передачи данных), с помощью которого стал возможен доступ к Интернет с мобильных устройств. Но скорость передачи данных в сетях 2G, конечно же, пока оставляла желать лучшего, так как позволяла загружать не более 19 Кбит интернет-трафика в секунду.
Основными преимуществами сетей 2G по сравнению с предшественниками было то, что телефонные разговоры были зашифрованы с помощью цифрового шифрования; система 2G представила услуги передачи данных, начиная с текстовых сообщений СМС.
Растущая потребность пользователей мобильной связи в использовании Интернет с мобильных устройств основным толчком для появления сетей, поколения 2,5G, которые стали переходными между 2G и 3G. Сети 2,5G используют те же стандарты мобильной связи, что и сети 2G, но к имеющимся возможностям добавилась поддержка технологий пакетной передачи данных – GPRS (англ. General Packet Radio Service – пакетная радиосвязь общего пользования), которая позволила увеличить скорость передачи данных с 19 до аж 172 кбит/с. Но это лишь в теории, на практике скорость едва ли достигала 80 кбит/с, что по сравнению с 2G тоже не так уж плохо. Слежующий промежуточный этап - появление технологии EDGE (англ. Enhanced Data rates for GSM Evolution – повышенная скорость передачи для развития GSM) в сетях GSM, получивший название 2,7G. Технология предполагала лишь усовершенствование прежней, а не создание чего-то принципиально нового. Теоретический максимум составлял около 384 Кбит/с, практические показатели варьировались в районе 150 Кбит/с.
Использование пакетной передачи данных позволило увеличить скорость обмена информацией при работе с сетью Интернет с мобильного устройств до 384 кбит/с, вместо 9,6 кбит/с у 2G-сетей.
Основные цифровые стандарты систем сотовой связи второго поколения:
D-AMPS (Digital AMPS - цифровой AMPS; диапазоны 800 МГц и 1900 МГц);
GSM (Global System for Mobile communications – глобальная система мобильной связи, диапазоны 900, 1800 и 1900 МГц);
CDMA (диапазоны 800 и 1900 МГц);
JDC (Japanese Digital Cellular – японский стандарт цифровой сотовой связи).

Связь 3G

Работы по созданию технологий третьего поколения начались в 1990-х годах, а внедрение состоялось только в начале 2000-х (в 2002 году в России).
Разработанные к тому времени стандарты основывались на технологии CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением).
Третье поколение мобильной связи включает 5 стандартов: UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA, DECT и UWC-136. Наиболее распространенными из них являются стандарты UMTS/WCDMA и CDMA2000/IMT-MC. В России популярность получил стандарт UMTS/WCDMA. Далее предлагаю остановиться на основных технологиях 3G:
UMTS (Universal Mobile Telecommunications System – универсальная сисема мобильной электросвязи) – технология сотовой связи разработанная для внедрения 3G в Европе. Используемый диапазон частот 2110-2200 МГц. (зачастую ширина канала 5 МГц). Скорость передачи данных в режиме UMTS составляет не более 2 Мбит/с (для неподвижного абонента), а при движении абонента, в зависимости от скорости движения, может опуститься до 144 Кбит/с.
HSDPA (High-Speed Downlink Packet Access — высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных), основанный на UMTS технологии. Данный протокол и последующие его версии позволили значительно увеличить скорость передачи данных в сетях 3G. В первой своей реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в следующей реализации протокола HSDPA составляла уже 3,6 Мбит/с. На этот момент 3G модемы получили большую популярность и у большинства пользователей были модемы поддерживающие именно этот стандарт, наиболее популярные модель Huawei E1550, ZTE mf180. Нужно сказать, что до сих пор можно встретить подобные экземпляры в использовании. В результате дальнейшего развития протокола HSDPA удалось увеличить скорость сначала до 7,2 Мбит/с (наиболее популяные модемы Huawei E173, ZTE MF112), а затем до 14,4 Мбит/с. (Huawei E1820, ZTE MF658) Вершиной технологии HSDPA стала технология DC-HSDPA скорость которой могла достигать 28.8 Мбит/с. DC-HSDPA по сути двухканальный вариант HSDPA.
HSPA+ – технология, базирующаяся на HSDPA, в которой реализованы более сложные методы модуляции сигнала (16QAM, 64QAM) и технология MIMO (Multiple Input Multiple Output – множественный вход множественный выход). Максимальная скорость 3G может достигать 21 Мбит/с. Подобную технологию уже относят к 3,5G.
DC-HSPA+ технология с самым быстрым 3G Интернетом 42,2 Мбит/с. По сути это двухканальный HSPA+ с шириной канала 10 МГц. Часто это технологию называют 3.75G.
Все устройства, поддерживающие режим работы в сетях третьего поколения, поддерживают также стандарты предыдущих поколений. К примеру, уже устаревший на сегодняшний день USB-модем Huawei E173 для сетей 2G/3G поддерживает стандарты GSM, GPRS, EDGE (до 236,8 Кбит/c), UMTS (до 384 Кбит/c), HSDPA (до 7,2 Мбит/с), т.е. стандарты сетей как второго так и третьего поколений. Максимальная скорость с которой может работать данное устройство равна 7,2 Мбит/с. Более «продвинутая» модель Huawei E3131 для сетей 2G/3G поддерживает набор стандартов, включающий кроме вышеперечисленных еще и HSPA+. Максимальная достижимая скорость загрузки данных на этом устройстве значительно больше и составляет 21 Мбит/сек. Но следует учесть, что максимальная теоретическая и реальная скорости отличаются довольно сильно, например на модемах huawei E1550, zte mf180, где максимальная скорость 3.6 Мбит/с, на практике можно добиться скорости 1-2 Мит/с, на модемах Huawei E173, ZTE MF112 (максимальная скорость 7,2 Мбит/с) на практике 2-3,5 Мбит/с, это при условии хорошего уровня сигнала и низкой загруженности вышки мобильного оператора. Одним из факторов повышения скорости 3G Интернета является использования модема поддерживающего максимальную скорость 3G. Например, мы рекомендуем модем Huawei E3372, он не только поддерживает максимальную скорость 3G Интернета (до 42,2 Мбит/с), но и 4G (до 150 Мбит/с), кто то может возразить и сказать что в его «дыре» 4G не будет никогда, однако не забывайте, что несколько лет назад вы и о 3G не мечтали. Технологии не стоят на месте и со временем покоряют даже удаленные села и поселки.

Связь 4G

На смену еще не исчерпавшему свои возможности 3G приходят новые технологии, технологии четвертого поколения (4G), в большей степени отвечающие запросам времени. Технологии поколения 4G обозначили совершенно новые требования к качеству сигнала связи и его стабильности.
Детищем совместных исследований компаний Hewlett-Packard и NTT DoCoMo в области разработки технологий передачи данных в беспроводных сетях четвертого поколения стали стандарты LTE и WiMax.
• Стандарт WiMAX был разработан в 2001 году организацией WiMAX Forum, в состав которой входят такие производители, как Samsung, Huawei Technologies, Intel и другие известные компании. Концептуально WiMAX является продолжением беспроводного стандарта Wi-Fi. Версии стандарта WiMAX подразделяются на фиксированные, предназначенные для неподвижных абонентов, и мобильные, для движущихся абонентов со скоростью, не превышающей 115 км/час. Первая коммерческая WiMAX-сеть была запущена в эксплуатацию в Канаде в 2005 году. В России данную технологию запустила Yota
• Стандарт LTE (Long-Term Evolution — долговременное развитие) по сути является продолжением развития стандартов GSM/UMTS и первоначально не относился к четвёртому поколению мобильной связи. На сегодняшний день именно LTE является основным стандартом сетей четвертого поколения (4G). Впервые представленный вышеупомянутой компанией NTT DoCoMo, крупнейшим в мире японским оператором сотовой связи, стандарт LTE, в десятом его релизе LTE Advanced, был избран Международным союзом электросвязи в качестве стандарта, отвечающего требованиям беспроводной связи четвертого поколения. Первая коммерческая реализация LTE-сети была осуществлена в 2009 году в Швеции и Норвегии.
Максимальная теоретическая скорость передачи данных в LTE-сетях составляет 326.4 Мбит/с. На практике скорость передачи данных существенно зависит от используемой оператором ширины диапазона частот. Наибольшую ширину диапазона частот на сегодняшний день имеет сотовый оператор Мегафон (40 МГц), что является серьезным преимуществом перед другими отечественными операторами сотовой связи, которые используют ширину 10 МГц. Максимальная скорость передачи данных в LTE-сети при ширине диапазона 10 МГЦ равна 75 Мбит/с. Ну а предельная скорость передачи данных при использовании ширины диапазона 40 МГц может достигать 300 Мбит/с.
Развитие подстегнуло к появлению технологии LTE-Advanced.
Основными требованиями к LTE-Advancedявляются требования к пропускной способности (до 1 Гбит/с) и спектральной эффективности (до 30 бит/с/Гц) на радиоканале между базовой станцией и мобильной станцией. Для того, чтобы встретить эти требования, начиная с LTE Release 10, в стандарт добавляется ряд расширений (через увеличение спектральной эффективности) (MIMO, Multiple Input Multiple Output) использование нескольких приемных и нескольких передающих антенн. Добавляется поддержка MIMO 8x8 в нисходящем канале (от базовой станции к мобильным станциям) и MIMO 4x4 в восходящем канале (от мобильной станции к базовой станции). Для этого вводятся новые режимы передачи (TM, Transmission Mode)
25 февраля 2014 года LTE Advanced в Москве была запущена оператором Мегафон. Максимальная скорость достигает 300 Мбит в секунду на потоке загрузке и 50 Мбит на трафике от абонента;
В августе 2014 года Билайн присоединился и запустил в столице сеть, объединившую два диапазона – Band 7 (2,6 ГГц) и Band 20 (800 МГц). Максимальная скорость загрузки – 115 Мбит в секунду;

Яндекс.Метрика Top.Mail.Ru Витрина ссылок и баннеров - CUYS